Anthrax and Cattle: Terror on the Prairies.

Like most people, when I think of anthrax, I think of white powder, mail and terrorism plots. If I was the extremely paranoid type, the recent news reports of cattle dying of anthrax infection on farms in Saskatchewan and Manitoba might have me wondering whether our food-chain is now being targeted by terrorists.

The latest threat to Canada’s beef industry, following the mad-cow hysteria of the past few years, is anthrax. the Canadian Food Inspection Agency (CFIA) has reported 644 dead animals on 136 farms in Manitoba and Saskatchewan, most of these cattle. Why? Did terrorists tire of licking envelopes? Are they frustrated with the speed at which snail-mail is delivered? No. This recent outbreak of infection in cattle is naturally occurring, unrelated to any sort of conspiracy.

Anthrax is a zoonotic infection, primarily infecting grazing animals (herbivores) who ingest spores of the bacteria, Bacillus anthracis, found in soil. Bacillus anthracis in its spore form is extremely resistant to harsh environmental conditions such as drying, heat, cold and chemical exposure. This is the reason that anthrax spores have been popular throughout history as an agent of biowarfare and bioterror.

Not all bacteria have the ability to form spores, but for those that do, when environmental conditions become uninhabitable, the bacteria enters into a dormant or nonactive state. Once conditions improve, such as when the spore is inhaled into a nice warm moist nutritious body, animal or human, the spore changes back to its vegetative or active state and begins to grow and multiply. As Bacillus anthracis multiplies, it produces toxins that cause damage and are potentially life-threatening. Infected cattle die quickly once infected so that sick animals are not often seen.

The current outbreak is the largest recorded outbreak of zoonotic anthrax occurring over the largest area in Canada. The last largest outbreak reported by the CFIA was in 2000, involving 28 cattle – 24 in Manitoba, 3 in Ontario and 1 in Saskatchewan. There were also 10 deaths in other animals – 6 in bison (5 in Alberta and 1 in the North West Territories) and 4 in black bears, moose and wolves in Alberta. However, deaths are sporadically seen most years across the Prairie provinces. Why are we seeing so many deaths in livestock this year? The abundant rain and flooding in Saskatchewan and Manitoba this spring and early summer have been extremely favorable for bringing anthrax spores to the surface of fields and meadows where animals graze. Spores reportedly can live in the soil for 50 years or more. Once ingested by animals grazing in spore-rich areas, the bacteria causes a severe gastrointestinal infection, which very often leads to death.

What is the threat to humans? Check in next week to find out whether there is reason for concern.

Sea Turtles of Sipadan Island

A visitor to Sipadan Island (or Pulau Sipadan as it is locally known) is sure to see an abundance of marine life including whirling schools of barracuda, roaming sharks, and of course, plenty of sea turtles. Sipadan dive operators often boast that turtle sitings are guaranteed on their tours, and those boasts are not often wrong. Yet sea turtle populations throughout Malaysia continue to struggle, meaning Sipadan’s turtles must be studied and enjoyed with care.

Turtle Species of Pulau Sipadan

Malaysia is home to four species of turtle according to the WWF-Malaysia website (“What we do>Species>Turtles”). These include the Leatherback, Olive ridley, and Hawksbill turtles. The most abundant species however is the Green turtle – a creature which is actually black brown or greenish yellow in color. Regardless of its color this magnificent animal can grow to be four feet long and is quite an exciting find when visiting Sipadan dive sites.

It may be hard to recognize that all of Malaysia’s turtle species are endangered when visiting Sipadan. According to SCUBA diver and travel writer Jack Jackson in his book Diving with Giants as many as 30 turtles can be seen on a single dive in the month of August. This is peak egg laying season but each species of turtle uses Pulau Sipadan as a nesting site year round.

Sipadan Dive Sites and the Turtle Cavern

Sipadan Island is surrounded by beautiful dive sites most of which are home to large sea turtles. According to the online diver’s resource Asia Dive Site under its “Malaysia: Sipadan” entry, dive sites such as Coral Gardens, South Point, North Point, and Turtle Patch are all excellent places to go for turtle sitings. However, Sipadan’s most famous dive site is probably Turtle Cavern. A dark labyrinth of caves, Turtle Cavern was once thought to be the place where Sipadan turtles go to die. The cavern’s floor is littered with turtle skeletons and carcasses.

Unfortunately, the truth behind the cavern is quite chilling. According to Jack Jackson in Diving with Sharks and Other Adventure Dives, turtles use caves to rest in, but some turtles venture too far into the tunnels and, no longer able to see the light at the entrance become lost. Unable to find their way out, the turtles cannot surface to breathe, and thus drown within the cave system.

Visitors hoping to dive Sipadan will find a unique site at Turtle Cavern. However divers should approach the cave with caution so they do not meet the same fate as the unfortunate lost turtles.

Sea Turtle Conservation on Sipadan Island

Unfortunately, caves aren’t the greatest threats to turtles in Malaysia. Humans hunting turtles, developing resorts on their nesting sites, and accidentally catching them in fishing nets has driven all four species of Malaysia turtle onto the endangered species list. Recognizing this, the Malaysian government has taken steps to conserve turtles near Sipadan.

Asia Dive Site writes that, Sipadan has been declared a national park. All resorts that were on the island have left and the number of visitors to the island are restricted. These decisions seem to have helped Sipadan’s marine life writes the Borneo Post in “Marine Life Galore at Sipadan Island Marine Park”. The article writes how the Sipadan Island Marine Park Scientific Expedition found turtle populations increased since 2005 with 50-60 turtles seen in one day near their feeding area.

Neuroscience and the Neuronal Correlates of Consciousness

Neuroscience and the Brain

Even the most enthusiastic neuroscientist will concede that the human brain is not much to look at: a 1.5kg cauliflower of grey, spongy matter. But despite their modest outward appearance, our brains are the most complex objects known to man, and still represent the greatest problem in biology: how the timed firing of electrical signals from neurons, along with glial cells and neurotransmitters, can give rise to something as remarkably abstract as our own consciousness.

With recent advances in the field of neuroscience, the way we think about the way we think is changing, and the quest for the physical basis of consciousness promises to be a voyage of discovery as fascinating as the quest for the structure of DNA in the early 1950s. But what exactly are the problems facing neuroscientists, and how are these being solved today?

Defining Consciousness and Awareness

Perhaps the first issue is in defining consciousness itself. As human beings, we experience the world. When light of a certain wavelength hits the cone photoreceptors of our retina, we experience the sensation of seeing “red”, for instance, and we have feelings that correspond to this experience.

We are also probably not the only animals who experience the world in this way. Experimenting (humanely) with chimpanzees and dolphins has demonstrated that they are capable of complex, abstract tasks such as recognising themselves in mirrors (Gallup, 1970) and planning future actions (BBC), activities which should be impossible without some form of consciousness, or inner mental life.

Even the humble fruitfly has demonstrated that it is capable of complex behaviours involving choice (Heisenberg and Wolf, 1984). As such, Descarte’s idea of there being a “threshold of consciousness” over which only humanity has stepped has begun to sound as outdated as the concept of a geocentric universe.

Are Computers Conscious?

However, a neat sliding scale of consciousness also has its faults. Everyone has experienced what happens when a computer finds a fault in its hardware: you will likely receive a cryptic error message, or simply the “blue screen of death” as the damaged system struggles to function. But the idea that computers sense this line of code as analogous to pain, or that they experience the world on any level at all, can be discarded fairly quickly.

That is not to say that this suggestion does not have its proponents. Some scientists, like David Chalmers of the University of Arizona, postulate that all systems capable of processing information, even digital systems, are conscious in some sense, if only on a rudimentary level. Chalmers does concede, however, that it would probably not feel like much “to be a thermostat” (Koch & Krick).

Were this theory correct, it would suggest that our spinal columns, for instance, along with many parts of our brain and even the 100 million or so neurons found in the intestinal wall, could themselves be conscious. After all, they, too, process enormous amounts of information every second. If they are, of course, they are certainly not telling us about it!

Studying the Brain

One problem for scientists is that in-depth study of the brain is necessarily an invasive and life-threatening procedure. Much has been learnt from studies involving electrodes measuring the brain’s electrical field from outside the skull, but this is as problematic as trying to learn about the structure of the ocean by studying its waves.

As such, a vast majority of recent developments in the science of our own minds comes from what happens when they go wrong. Patients suffering massive epileptic seizures must undergo complicated surgery to have electrodes placed inside their brain in order to locate the troublesome tissue causing their seizures. This gives scientists a unique opportunity to study the way the brain works, and in particular how its workings give rise to consciousness.

The Clinton Neuron

One remarkable discovery has involved a specific neuron found in a seizure patient that fires whenever the subject sees a picture of former US president Bill Clinton. The patient was shown photographs of other white-haired men, other former presidents and hundreds of random control pictures, none of which elicited a response. Every time Mr. Clinton entered the subject’s field of view, the electrical readings from this single neuron spiked.

The implications of this are enormous, since it places the firing of neurons right at the start of the chain of mechanisms that create consciousness. When this neuron and the possibly hundreds of other “backup” duplicates fire, they somehow start a series of events that results in the patient recognising a face. But the question remains: how does this binary system of neurons either firing or remaining dormant create the almost infinite intricacies of our minds?

The Biology of Belief by Bruce Lipton, Ph.D.

Lipton introduces in his book The Biology of Belief what he calls the new biology against the dogma of contemporary biology: DNA controls biological life. Ever since Darwin suggested in his 1859 book, The Origin of Species that “hereditary factors” passed from parent to child was the driving force for evolution, biologists were obsessed with the search for the hereditary mechanism that controlled life.

When the DNA structure and function were unveiled by James Watson and Francis Crick, the world was being taken by the rosy prospects of discovering the secrets of life. The power of DNA has grown from determining our physical characteristics, to controlling our emotions and behavior. The survival of the fittest individual is reflected in the survival of the fittest genes.

The New Biology

Against this traditional reductionist’s view of a competitive life, Lipton presents scientific evidences, including underrated old findings and exciting recent discoveries, that life is about co-operative harmony not only with other life forms, but also with the physical environment.

By expounding why and how “smart” cells, as Lipton calls them, can teach us about human mind and body, Lipton replaces the biological myths with the following conclusions:

  • Genes do not control biology in a fatalistic sense.
  • Cell membrane, instead of the DNA-containing nucleus, is the true brain of a cell.
  • The environment plays a decisive role in the behavior of cells despite the genetic codes.

How Thoughts Control Life

By explaining why quantum physics is relevant to biology, Lipton points out that the body, like the universe, is one indivisible whole with interchangeable energy and matter. Thoughts, the mind’s energy, directly influence the physical brain, long recognized as an electrical organ. The brain controls body’s physiology by activating or inhibiting proteins which in turn change the micro-environment of the cells and thus control cell functions.

Such biological consequences of thoughts or beliefs lead Lipton to call his book The Biology of Belief. The placebo effect is a prime example Lipton uses to explain the effects of mind over body. However, Lipton points out that reality is complicated by the operation of conscious and unconscious thoughts. The mere thinking of positive conscious thoughts against the more powerful unconscious programming does not change anything.

Lipton continues to illustrate the biological basis of negative thoughts, mostly related to the physiology of the flight and fight response triggered by fear. Such protective mechanism inhibits growth to conserve energy and resources for survival. The growth-inhibiting mode has profound effects on human development as far back as the time of conception. Lipton devotes a whole chapter called “Conscious Parenting: Parents as Genetic Engineers” about the importance of creating a healthy and happy environment – biologically, emotionally and physically – for the unborn children and infants.

What Lipton does not elaborate much is how an adult can undo the self-sabotaging unconscious programming to create a fulfilled life although he does mention in the Addendum that PSYCHE-K has helped him undo his self-limiting beliefs. The Biology of Belief is more a scientific exploration about how thoughts control life, rather than a self-help book with practicable steps to change one’s life.

How Do Bacteria Make People Sick?: Bacterial Pathnogenicity, Virulence Factors and Infectious Disease

In order to cause disease, potentially harmful bacteria must first enter the body, usually through breaks in the skin, penetrating the mucous membrane or colonizing the gastrointestinal (GI) tract. This is considered infection, when bacteria breech the first line defenses of the body.

Bacterial disease starts with infection, but infection does not always result in disease. Many bacteria are beneficial. And even when pathogens infect the body, the immune system may be able to eliminate the infection before symptoms of disease occur.

Bacterial Pathogenicity and Virulence

To cause disease, bacteria must be present in sufficient numbers. But what is it about bacteria that make an infected person ill? Disease is not merely caused by the presence of microbes.

Pathogenicity (path-o-jen-ISS-ity) refers to a microbe’s ability to cause disease, and some microbes are more pathogenic—better able to cause disease—than others. The degree of a microbe’s pathogenicity is considered its “virulence.” For example, highly virulent bacteria frequently cause disease, whereas less virulent bacteria may only cause disease when present in large numbers or within hosts that have weakened immune systems.

Many pathogenic, or disease-causing bacteria have special weaponry, traits that enable them to infect and damage host tissue. These disease-causing traits are called “virulence factors”. The following sections describe different types of virulence factors.

Adhesion Factors, Glycocalyces and Biofilms

Once bacteria get into the body, they must be able to stick to the host’s cells in order to increase in number. Bacteria that are able to stick to host cells have special structures or chemicals, collectively called adhesion factors. These adhesins are found on bacterial cell extensions, such as fimbriae and flagella, and also on glycocalyces, a sticky layer surrounding some bacterial cells that enable bacteria to stick to surfaces and to each other in biofilms. For example, the inside of the mouth and teeth are covered with a sticky bacterial biofilm, particularly in the morning, before brushing, because bacteria have been multiplying in the mouth throughout the night.

Bacterial Extracellular Enzymes

Some pathogenic bacteria are able to produce and secrete enzymes that compromise cell structure of the host and enable the bacteria to work their way further into the body.

Bacterial Toxins

Bacteria may also produce toxins that cause damage to host cells either directly, by destroying tissue, or indirectly, by triggering an intense or prolonged host immune response. Bacterial toxins fall into two general categories based on their position relative to the cell that produces them; exotoxins, which are secreted by bacteria, and endotoxins, such as lipid-A, which are part of the Gram-negative bacterial cell.

Evading Host Immune System

The human immune system has special white blood cells called phagocytes, which search out, engulf and digest invading pathogens. The sooner a pathogen can be eliminated from the body, the less damage it will have the opportunity to cause. However, bacteria have developed means of evading phagocytes.

The bacterial capsule, a type of glycocalyx, can help a bacterium hide from the immune system. This coating is often made of chemicals that are found in the human body, and that don’t trigger an immune response.

Other bacteria produce chemicals that prevent them from being digested once engulfed by a phagocytic white blood cell, allowing the bacteria to live and reproduce inside the host cells designed to eliminate them. Other antiphagocytic chemicals can prevent bacteria from being engulfed by white blood cell, or can even destroy white blood cells.

How We Hear – Travel Along a Sound Wave from Ear to Brain

Hearing happens in an instant – quick transformations to energy until the movement of molecules is meaningful to a listener. It’s not magic, but the small size and complexity of shapes, movements and structures involved in energy transformation makes the process seem magical. To be able to hear beautiful music or birdsong in spring or mother’s voice is an awesome act of nature.

To put it very simply, sound is a type of energy and to get it from outside the head to the place in the brain where it can be “heard,” sound energy has to be sent from the microphone to the amplifier, along wiring, and on to the translating device.

Outer Ear

The ear that seen on the side of the head acts like a satellite dish that catches waves of sound. This outer ear is shaped to funnel and swirl the sound of energy made when molecules move as they are displaced by air, water or solid objects. The displacement forms waves that flow into the ear hole. In the tunnel that leads to the ear’s complex structures, the molecules move closer together and become louder.

On to the Middle and Inner Ear

Just about an inch past the ear that is seen outside the body and inside the ear hole, sound energy beats on the ear drum. The rhythm is taken up and passed along by three very tiny bones. In the middle ear compartment, the mechanical action of the bones amplify the air waves.

Now in the form of mechanical energy, the wave moves on to another tiny membrane that leads to the shell-shaped and fluid-filled inner ear. In the shell, called the cochlea, sound energy swims through the fluid and strums across teeny, tiny hairs that bend and snap.

On to the Brain

Energy fires neurons bundled into the nerve of hearing, the auditory nerve. The nerve’s long wires or axons zings energy forward to lower brain structures until the energy in analyzed in the cortex of the brain.

Now, if anything is really magical, it’s this part of hearing. How does that electrical energy get processed into meaningful words and sentences? Researchers are just beginning to understanding how the brain works and new discoveries are revealing more and more amazing information every day.

Sound Traveled, Energy Converted, Hearing Accomplished

Hear that? Fast, wasn’t it?

To summarize, the sound energy from the air is captured by the ear, knocks on the ear drum, is amplified by the bones of the middle ear, swims into the waters of the inner ear where waves wash over tiny hairs, which snap an electrical message along nerve wiring to the brain. The energy zaps to the cortex where analysis takes place and a response unfolds next.

Although it happens in an instant, it’s not magic. But hearing is still rather miraculous … or magical … don’t you agree?

Long Point Waterfowl A Leading Researcher: Ontario Organization Studies Waterfowl Issues

Based in Long Point, Ontario, Long Point Waterfowl is a non-profit, non-government organization dedicated to waterfowl and wetland-related research, conservation and training. Long Point Waterfowl also promotes Canada’s outdoor heritage.

Long Point Waterfowl was originally formed as Long Point Waterfowl and Wetlands Research Fund in the 1980s. Conservation-minded hunters at Bluff’s Club, a private hunting club on Long Point, were behind the efforts. Funding is still mainly from the Bluff’s Club members, but is also supported by Ducks Unlimited Canada, Waterfowl Research Foundation, Syndenham Conservation Foundation and the Ontario Federation of Anglers and Hunters.

The headquarters for Long Point Waterfowl is at Bird Studies Canada in Long Point, which is also the administrator.

The primary purpose of Long Point Waterfowl is to study the staging ecology and requirements of waterfowl on the lower Great Lakes. Long Point Waterfowl scientists also monitor trends in the distribution and abundance of waterfowl, research waterfowl habitat and provide information regarding waterfowl management.

Research results are published in scientific journals and presented at leading symposiums.

Long Point Waterfowl Research Centre

A former Ontario Youth Ranger Camp, Long Point Waterfowl leased this facility near Turkey Point as a place to host students and hold youth programs.

Youth Involvement In Conservation

One of the more unique events at Long Point Waterfowl is its young biologists workshop. This annual summer event is aimed at teenagers who are thinking of a future career as a biologist, conservation officers, wildlife technician or other related fields.

Participants learn about banding ducks, habitat, wildlife ecology, the role of hunting in conservation and a wide variety of other topics. The multi-day event includes meals and a stay at the Long Point Waterfowl Research Centre. Participants also learn about the educational requirements of future careers and hear from professionals in those fields.

Long Point Waterfowl also hosts a multi-day event where teenagers can stay at the centre and take all the training for their hunting certification.

Fund executive director Scott Petrie is also a teacher at the University of Western Ontario and sees that the students coming in don’t have the same background in the outdoors.

“Within our profession, people aren’t getting the training,” he said. “When I get a 22-year-old, they’re behind the eight-ball because they don’t have the passion.”

Research Projects at Long Point

Tundra swans are regular visitors to Long Point on their migration route from wintering grounds on the Atlantic seaboard to the high Arctic breeding grounds. Since little was known about these long-distant migrants, one of the first projects Petrie undertook was a satellite tracking study to learn more about tundra swan migration routes.

This was groundbreaking research, as such a study had never been undertaken with tundra swans in North America.

Resulting research has shown much about the swans, how much time they spent on migration, feeding habits along the way, when they arrive in the Arctic and much more. A map of the migration is available on Long Point Waterfowl’s web site

When a problem began to appear that numbers of lesser and greater scaup were declining relative to the health of other waterfowl species, Long Point Waterfowl again turned to satellite transmitters to learn more about the birds. This effort is still ongoing and is part of a cooperative venture between several research organizations investigating the problem.

Another major research initiative looked at the historical abundance and distribution of phragmites at Long Point. This tall grass with feather-like tops, an invasive species, was rapidly expanding at Long Point and displacing native vegetation. Research showed it is less preferable as waterfowl habitat than native vegetation. Other researchers have since identified it is a problem at other locations in Southwestern Ontario.

A current study is looking at the expanding population of Greater Sandhill Cranes in Ontario and the impact on agriculture.

Louis Pasteur – A Pioneer: Contributions of Pasteur to the Development of Microbiology

Louis Pasteur, one of the greatest scientists the world has seen, was born on December 27, 1822, in Dole, France. His father was a poor tanner but he wanted Louis to get a good education. Pasteur attended school in a nearby town called Arbois. His headmaster saw potential in him and encouraged him to go to Paris to further his education.

Early Life of Louis Pasteur

Pasteur’s first sojourn to Paris did not go too well. He got homesick and came back to study in a town called Besancon, where he received degrees in Letters and Mathematical Sciences. He got admitted to an elite college in Paris called Ecole Normale Superieure. He obtained his doctorate degree in 1847 and a year later he became professor of Chemistry at the University of Strasbourg. He courted and married Marie Laurent, the daughter of the University Hostel’s Rector, in 1849.

Birth of Stereochemistry

Pasteur’s first landmark contribution was to the field of chemistry where he showed the presence of chiral molecules of sodium ammonium tartarate. Chiral compounds have the same molecular formula but they are mirror images of each other. This discovery triggered the search for chiral molecules of many other compounds giving rise to a new branch of chemistry called Stereochemistry. In 1856, he was made the administrator and director of scientific studies at Ecole. By 1857, Pasteur had become a world famous scientist.

Pasteurization

During his time at the University of Lille, Pasteur was approached by the wine manufacturers of the region. They were concerned about many recent batches of their wine turning sour and this problem was seriously affecting the reputation (and profits) of the famous French Wine Industry. Careful analysis by Pasteur showed that a bacterium had “contaminated” the wine fermentation batches and was producing an acid which was resulting in souring of the wine.

He found out that gentle heating of the wine to around sixty degrees centigrade for about thirty minutes was enough to destroy the bacterium and prevent souring. This came as a great relief for the French Wine Industry and also helped Pasteur’s reputation go far and wide. This technique of Pasteur’s was applied to other beverages as well and particularly to milk where it came to be known as pasteurization.

Discovery of Germ-Disease Relationship

Pasteur also rescued the French Silk Industry which was plagued by a disease called pebrine which affected the caterpillars which died before making their cocoons. Pasteur found out that the disease was caused by a bacterium. He thus found out the connection between bacteria and diseases. He worked with the silk industry to devise methods to keep their hatcheries bacteria-free and thus, disease-free.

Discovery of Attenuation

One of the most important discoveries of Pasteur is, without doubt, attenuation. He was working on a disease which plagued chickens and was affecting the poultry farmers of France. This disease called “chicken cholera” was caused by a bacterium. Pasteur isolated the bacteria from diseased chickens, cultured them outside and when he inoculated this fresh culture into healthy chickens, they developed the disease and died. Legend has it that he left a bottle of culture in his laboratory and went for a couple of weeks’ vacation. When he returned, he inoculated the “old” culture into healthy chickens. The chickens became sick but recovered, much to the chagrin of Pasteur who had expected them to die.

Pasteur then inoculated fresh “virulent” bacterial culture into the same chicken, which surprisingly, failed to die. Pasteur deduced that the bacterial culture had lost its “virulence” or disease-causing ability and had been “attenuated.” This forms the basis of vaccination. Pasteur applied this technique to help protect sheep from anthrax, another fatal bacterial disease. But Pasteur is best remembered for his work on the rabies vaccine, the first human vaccine.

The Rabies Vaccine

Pasteur inoculated the fluid taken from a rabid dog that had just died, into a rabbit. The rabbit developed rabies and died. Pasteur removed the spinal cord of the rabbit, dried it and powdered it. He injected this into a healthy rabbit, which was later inoculated with the virulent inoculums. The rabbit failed to develop rabies. The first person on whom the rabies vaccine was tested was a young boy named Joseph Meister. The boy repaid the benevolence of Pasteur by returning to Paris and working for him. When Meister was key keeper of the Pasteur Institute in Paris, the Nazis raided it and forced Meister to hand over the keys of Pasteur’s crypt. Instead of handing over the keys and betraying his benefactor, Meister shot himself.

Pasteur dedicated his entire life to the goodwill of humankind. He faced personal tragedies during his life with three of his five children dying at a young age. It is a general belief that had the Nobel Prize been instituted earlier, Pasteur would have won it a number of times for his various important contributions. Pasteur died on September 18, 1895 from complications arising from a stroke he had suffered a few years previously.

Bruce Lipton’s The Biology of Belief: A Look at Unleashing the Power of Consciousness, Positive Thought

In the Biology of Belief, Bruce Lipton lays a scientific foundation that positive thoughts are a biological mandate for a happy, healthy life.

Bruce Lipton, Ph.D., is a cell biologist and his book The Biology of Belief: Unleashing the Power of Consciousness, Matter & Miracles is about how his work with cells led him to believe that genes and DNA do not control a person’s biology.

Rather, Lipton claims that signals from outside the cell, including the energy from positive and negative thoughts, control biology.

Lipton’s Theory on Cell Receptors

All cells have receptors that respond to their environment. For example, receptors detect estrogen, insulin, histamines, etc., which is how these substances affect the body’s cells. But not only do a cell’s receptors respond to physical substances, they also respond to vibrational energy fields such as light, sound, and radio frequencies.

Lipton’s research with cells led him to the conclusion that it is not the DNA in the cell’s nucleus that “programs” the cell, as traditionally believed, but the signals that come in through the cell’s receptors. That is, the physical and energetic environment controls the life of a cell.

Biology and Quantum Physics

According to quantum physics, physical atoms are made up of spinning, vibrating vortices of energy. Each atom has its own specific energy signature, and collections of atoms (molecules) have their own identifying energy patterns. All physical matter is made up of molecules, including human beings, and each piece of matter (or person) radiates its own unique energy signature.

Lipton points out that because Western biologists have ignored the energy component while focusing on the physical things that affect cells. Lipton claims that they have arrogantly dismissed 3,000 years of effective Eastern medicine as unscientific, even though it’s actually based on a deeper understanding of the universe. Lipton goes on to say that, “vibrational frequencies can alter the physical and chemical properties of an atom as surely as physical signals like histamine and estrogen.”

Thoughts and Perceptions

Lipton claims that cells respond to vibrational frequencies. Thoughts and perceptions are vibrational frequencies; therefore, cells respond to thoughts and perceptions. The problem is that not all a person’s thoughts and learned perceptions are accurate.

Biologically speaking, human brains have the ability to rapidly download “an unimaginable number of beliefs and behaviors into our memory.” The subconscious minds of young children become programmed with the fundamental behaviors, beliefs, and attitudes that are observed in their parents. These programs control a person’s biology for the rest of their lives, unless they consciously figure out a way to reprogram the mind.

A stimulus automatically engages the behavioral response that was learned when the signal was first experienced. Although the conscious mind can observe what is happening and step in and change the behavior, a person must be fully conscious. This can be difficult, which is why willpower so often fails.

Methods for Changing Perceptions

Although the Biology of Belief explains the science of why thoughts and perceptions are important, and even notes that a person can choose what to see, and choosing to look at negative rather than the positive aspects of life makes a person susceptible to disease,

Lipton doesn’t actually get into how to change thoughts and perceptions. However, many methods are available today to change beliefs, including Emotional Freedom Techniques (EFT), the Sedona Method or Abundance Course (also known as Lester Levenson’s Release Technique), Ho’oponopono, the Work of Byron Katie, and PSYCH-K.

Lipton concludes that because controlling perceptions equal beliefs, beliefs control biology. And that leads to the conclusions that learning to harness you mind to promote growth is the secret of life, and positive thoughts are a biological mandate for a happy, healthy life.

The Science of Autumn or Fall Leaves: Why Do Leaves Change Colour and Fall From the Trees?

Autumn’s beauty is clear for all to see, the myriad shades of red, yellow and brown lifting the heart on a cold but bright October morning. But the curious mind wonders “Why?” Why do the trees go through this process every year, only to grow fresh leaves every spring? And why such a variety of colours and shades – of which any artist would be proud?

Using Chlorophyll

The green leaves of summer contain chlorophyll, which drives photosynthesis – the molecular factory transforming carbon dioxide and light into glucose – which gives energy to the plant and cellulose for growth. When summer ends and autumn arrives, it is the short days which trigger the changes in deciduous trees. The chlorophyll is taken back from the leaves to be recycled, but the leaves become not just superfluous, but a liability.

Abscission Zones

In order to exert a force of suction, to draw water from the ground during the summer, leaves sweat through their high surface area. In winter these same leaves could cause the trees to dry out and die, so they must be removed. The scientific process of leaf-removal is known as abscission. When the shorter days of Autumn arrive, a number of chemical changes occur and the abscission zone at the base of the year begins to swell, cutting off the flow of nutrients from the tree to the leaf and vice-versa. The zone then begins to tear, the leaf falls off or is blown away, and a protective layer seals the wound, preventing water evaporation and entry of bugs.

Anthocyanins and Aphids

But why do the leaves go so many different colours? The removal of the chlorophyll reveals other colours in the leaf – yellow, orange and brown – but some leaves turn red or purple for another important reason. The shorter days which trigger the process of abscission, also initiate another process in the leaves of certain trees to produce a group of chemicals called anthocyanins, which are deep red or purple in colour. This is not, however, just vanity on behalf of the tree.

In fact, the red colours are used to conceal the shades of yellow which attract aphids. So, trees which are more susceptible to aphids, or are native to areas where aphids are more of a problem, are able to confuse their enemies and survive to grace another spring.