Neuroscience and the Neuronal Correlates of Consciousness

Neuroscience and the Brain

Even the most enthusiastic neuroscientist will concede that the human brain is not much to look at: a 1.5kg cauliflower of grey, spongy matter. But despite their modest outward appearance, our brains are the most complex objects known to man, and still represent the greatest problem in biology: how the timed firing of electrical signals from neurons, along with glial cells and neurotransmitters, can give rise to something as remarkably abstract as our own consciousness.

With recent advances in the field of neuroscience, the way we think about the way we think is changing, and the quest for the physical basis of consciousness promises to be a voyage of discovery as fascinating as the quest for the structure of DNA in the early 1950s. But what exactly are the problems facing neuroscientists, and how are these being solved today?

Defining Consciousness and Awareness

Perhaps the first issue is in defining consciousness itself. As human beings, we experience the world. When light of a certain wavelength hits the cone photoreceptors of our retina, we experience the sensation of seeing “red”, for instance, and we have feelings that correspond to this experience.

We are also probably not the only animals who experience the world in this way. Experimenting (humanely) with chimpanzees and dolphins has demonstrated that they are capable of complex, abstract tasks such as recognising themselves in mirrors (Gallup, 1970) and planning future actions (BBC), activities which should be impossible without some form of consciousness, or inner mental life.

Even the humble fruitfly has demonstrated that it is capable of complex behaviours involving choice (Heisenberg and Wolf, 1984). As such, Descarte’s idea of there being a “threshold of consciousness” over which only humanity has stepped has begun to sound as outdated as the concept of a geocentric universe.

Are Computers Conscious?

However, a neat sliding scale of consciousness also has its faults. Everyone has experienced what happens when a computer finds a fault in its hardware: you will likely receive a cryptic error message, or simply the “blue screen of death” as the damaged system struggles to function. But the idea that computers sense this line of code as analogous to pain, or that they experience the world on any level at all, can be discarded fairly quickly.

That is not to say that this suggestion does not have its proponents. Some scientists, like David Chalmers of the University of Arizona, postulate that all systems capable of processing information, even digital systems, are conscious in some sense, if only on a rudimentary level. Chalmers does concede, however, that it would probably not feel like much “to be a thermostat” (Koch & Krick).

Were this theory correct, it would suggest that our spinal columns, for instance, along with many parts of our brain and even the 100 million or so neurons found in the intestinal wall, could themselves be conscious. After all, they, too, process enormous amounts of information every second. If they are, of course, they are certainly not telling us about it!

Studying the Brain

One problem for scientists is that in-depth study of the brain is necessarily an invasive and life-threatening procedure. Much has been learnt from studies involving electrodes measuring the brain’s electrical field from outside the skull, but this is as problematic as trying to learn about the structure of the ocean by studying its waves.

As such, a vast majority of recent developments in the science of our own minds comes from what happens when they go wrong. Patients suffering massive epileptic seizures must undergo complicated surgery to have electrodes placed inside their brain in order to locate the troublesome tissue causing their seizures. This gives scientists a unique opportunity to study the way the brain works, and in particular how its workings give rise to consciousness.

The Clinton Neuron

One remarkable discovery has involved a specific neuron found in a seizure patient that fires whenever the subject sees a picture of former US president Bill Clinton. The patient was shown photographs of other white-haired men, other former presidents and hundreds of random control pictures, none of which elicited a response. Every time Mr. Clinton entered the subject’s field of view, the electrical readings from this single neuron spiked.

The implications of this are enormous, since it places the firing of neurons right at the start of the chain of mechanisms that create consciousness. When this neuron and the possibly hundreds of other “backup” duplicates fire, they somehow start a series of events that results in the patient recognising a face. But the question remains: how does this binary system of neurons either firing or remaining dormant create the almost infinite intricacies of our minds?

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s