How Do Bacteria Make People Sick?: Bacterial Pathnogenicity, Virulence Factors and Infectious Disease

In order to cause disease, potentially harmful bacteria must first enter the body, usually through breaks in the skin, penetrating the mucous membrane or colonizing the gastrointestinal (GI) tract. This is considered infection, when bacteria breech the first line defenses of the body.

Bacterial disease starts with infection, but infection does not always result in disease. Many bacteria are beneficial. And even when pathogens infect the body, the immune system may be able to eliminate the infection before symptoms of disease occur.

Bacterial Pathogenicity and Virulence

To cause disease, bacteria must be present in sufficient numbers. But what is it about bacteria that make an infected person ill? Disease is not merely caused by the presence of microbes.

Pathogenicity (path-o-jen-ISS-ity) refers to a microbe’s ability to cause disease, and some microbes are more pathogenic—better able to cause disease—than others. The degree of a microbe’s pathogenicity is considered its “virulence.” For example, highly virulent bacteria frequently cause disease, whereas less virulent bacteria may only cause disease when present in large numbers or within hosts that have weakened immune systems.

Many pathogenic, or disease-causing bacteria have special weaponry, traits that enable them to infect and damage host tissue. These disease-causing traits are called “virulence factors”. The following sections describe different types of virulence factors.

Adhesion Factors, Glycocalyces and Biofilms

Once bacteria get into the body, they must be able to stick to the host’s cells in order to increase in number. Bacteria that are able to stick to host cells have special structures or chemicals, collectively called adhesion factors. These adhesins are found on bacterial cell extensions, such as fimbriae and flagella, and also on glycocalyces, a sticky layer surrounding some bacterial cells that enable bacteria to stick to surfaces and to each other in biofilms. For example, the inside of the mouth and teeth are covered with a sticky bacterial biofilm, particularly in the morning, before brushing, because bacteria have been multiplying in the mouth throughout the night.

Bacterial Extracellular Enzymes

Some pathogenic bacteria are able to produce and secrete enzymes that compromise cell structure of the host and enable the bacteria to work their way further into the body.

Bacterial Toxins

Bacteria may also produce toxins that cause damage to host cells either directly, by destroying tissue, or indirectly, by triggering an intense or prolonged host immune response. Bacterial toxins fall into two general categories based on their position relative to the cell that produces them; exotoxins, which are secreted by bacteria, and endotoxins, such as lipid-A, which are part of the Gram-negative bacterial cell.

Evading Host Immune System

The human immune system has special white blood cells called phagocytes, which search out, engulf and digest invading pathogens. The sooner a pathogen can be eliminated from the body, the less damage it will have the opportunity to cause. However, bacteria have developed means of evading phagocytes.

The bacterial capsule, a type of glycocalyx, can help a bacterium hide from the immune system. This coating is often made of chemicals that are found in the human body, and that don’t trigger an immune response.

Other bacteria produce chemicals that prevent them from being digested once engulfed by a phagocytic white blood cell, allowing the bacteria to live and reproduce inside the host cells designed to eliminate them. Other antiphagocytic chemicals can prevent bacteria from being engulfed by white blood cell, or can even destroy white blood cells.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s